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Complex	Engineered	Systems	

•  What	makes	an	engineered	system	complex?	
–  Its	large	size.	
– Humans	control	their	structure,	operation,	and	
evolution	over	time.	

•  Examples	of	complex	engineering	networks:	
– The	power	grid.	
– Transportation	networks.	
– Computer	networks	(e.g.,	the	Internet,	etc.).	
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Experimentation	

•  Experimentation	is	a	way	to	improve	our	
understanding	of	CESs.	

•  Experiments	are	used	widely	for,	e.g.:	
– Process	characterization	and	optimization.	
–  Improve	the	reliability	and	performance	of	
products	and	processes.	

– Product/process	design	and	development.	
– Achieve	product	and	process	robustness.	
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“All	experiments	are	designed	experiments;		
some	are	poorly	designed,		
some	are	well-designed.” 

George E. P. Box	

4	



Engineering Experiments

• Reduce time to 
design/develop new 
products & processes

• Improve performance of 
existing processes

• Improve reliability and 
performance of products

• Achieve product & process 
robustness

• Evaluation of materials, 
design alternatives, setting
component & system 
tolerances, etc.

A	General	Model	of	a	Process/System†	

†	“Design	and	Analysis	of	Experiments,”	by	Douglas	C.	Montgomery,	Wiley,	8th	edition,	2013.			
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Four	Eras	in	the	History	of	DoE	

•  The	agricultural	origins,	1918-1940s:	
– R.A.	Fisher	and	his	co-workers.	
– Profound	impact	on	agricultural	science.	
– Factorial	designs,	ANOVA.	

•  The	first	industrial	era,	1951-	late	1970s:	
– Box	and	Wilson,	response	surfaces.	
– Applications	in	the	chemical	and	process	
industries.	
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Four	Eras	in	the	History	of	DoE	(cont’d)	

•  The	second	industrial	era,	late	1970s	-	1990:	
– Quality	improvement	initiatives	in	many	
companies.	

– Taguchi	and	robust	parameter	design,	process	
robustness.	

•  The	modern	era,	beginning	circa	1990.	
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Experimentation	in	CENs	

•  From	a	recent	workshop	report†:	
“The	science	of	experiment	design	is	widely	used	in	science	and	
engineering	disciplines,	but	is	often	ignored	in	the	study	of	complex	
engineered	networks.	This	in	turn	has	led	to	a	shortage	of	simulations	
that	we	can	believe	in,	of	experiments	driven	by	empirical	data,	and	
of	results	that	are	statistically	illuminating	and	reproducible	in	this	
field.”	
	

†	Networking	and	Information	Technology	Research	and	Development	(NITRD),	Large	Scale	Networking	(LSN),	Workshop	Report	
on	Complex	Engineered	Networks,	September	2012.	
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Factorial	Designs	

•  In	a	factorial	experiment,	
all	possible	combinations	of	
factor	levels	are	tested.	

•  The	golf	experiment:	
–  Type	of	driver.	
–  Type	of	ball.	
– Walking	versus	riding.	
–  Type	of	beverage.	
–  Time	of	round,	etc.	
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The	Experimental	Design	

•  An	experiment	is	given	by	an	N	×	k	array.	
– The	k	columns	correspond	to	the	factors.	

•  Each	factor	Fi,	1	≤	i	≤	k	has	a	set	of	levels	Li.	
•  Each	of	the	N	rows	corresponds	to	a	test	in	
which	each	factor	Fi	is	set	to	a	level	in	Li.	

•  For	the	two-factor	factorial	experiment:	
Ball	 Driver	

1 B	 O	

2 B	 R	

3 T	 O	

4 T	 R	 10	



Factorial	Designs	with	Several	Factors	
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A	Fractional	Factorial	
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Statistical	Rigour	

•  Understanding	common	statistical	methods	is	
invaluable	in	being	able	to	represent	results	
coherently	and	accurately.	

•  When	measuring	a	system	that	does	not	have	
fixed	behaviour:	
– Perform	multiple	measurements	(replicates).	
– Statistical	error	arises	from	variation	that	is	
uncontrolled;	it	is	generally	unavoidable.	
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Sample	Distributions	
•  The	relationship	between	the	measurements	
of	centrality	(mean,	median,	and	mode)	give	
hints	about	the	distribution	of	the	data	
collected.	

sense of how the data is distributed and what the
expected behavior of the system will be.

In general, if the mean and median are rather close,
but the mode is vastly different (or there are two candi-
dates for the mode), a bimodal or multi-modal distribu-
tion is suggested (see Figure 1b). As described above in
Section 3.2.3, the standard deviation of a bimodal distri-
bution can be quite large, which can serve as a check on
the assumption that a distribution is normal.

It is important to note that these guidelines are not
fool-proof; comparing the mean, median, and mode can
only suggest the type of distribution from which data
was collected. Unfortunately, there is no rule of thumb
that always works, and when in doubt, the best course of
action is to plot the data, look at it, and try to determine
what is happening.

It is critical to select the appropriate metric of cen-
trality in order to properly present data. “No mathemati-
cal rule can tell us which measure of central tendency
will be most appropriate for any particular problem.
Proper decisions rest upon knowledge of all factors in a
given case, and upon basic honesty” [Gould96].

6.2 Expressing Variation
Measures of centrality are not sufficient to completely
describe a data set. It is often helpful to include a mea-
sure of the variance of the data. A small variance implies
that the mean is a good representative of the data,
whereas a large variance implies that it is a poor one. In
the papers we surveyed, we found that fewer than 15%
of experiments included some measure of variance.

The most commonly used measure of variance is
the standard deviation, which is a measure of how
widely spread the data points are. As a rule of thumb, in
a normal distribution, about 2/3 of the data falls within
one standard deviation of the mean (in either direction,
on the horizontal axis). 95% of the data falls within two
standard deviations of the mean, and three standard
deviations account for more than 99% of the data.

For example, in Figure 1a, which follows a normal
distribution, the mean, median, and mode are equal, and
the standard deviation is approximately 40% of the
mean. However, in Figure 1b, which shows a bimodal
distribution, the mean, median, and mode are quite dif-
ferent, and the standard deviation is 75% of the mean3.
Figure 1c shows an exponential distribution where the
median and mode are close, but rather different than the
mean. (We discuss techniques for determining the distri-
bution of a data set in Section 6.3.)

3. The large standard deviation here is because the distribution
is bimodal, but bimodal distributions do not necessarily have
to have a large standard deviation. The peaks of a bimodal
distribution can be close together; in this example they are not.

Another metric for analyzing the usefulness of the
mean in an experiment is the margin of error. The mar-
gin of error expresses a range of values about the mean
in which there is a high level of confidence that the true
value falls. For example, if one were concluding that the
latency of a disk seek is within four percent of the mean,

Figure 1. Sample distributions. The relationship
between the mean, median, and mode give hints about the
distribution of the data collected. In a normal distribution,
the mean is representative of the data set, while in an
exponential distribution, the mode and median are more
representative. In a bimodal distribution, no single metric
accurately describes the data.

A: Normal Distribution

B: Bimodal Distribution

C: Exponential Distribution
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sense of how the data is distributed and what the
expected behavior of the system will be.

In general, if the mean and median are rather close,
but the mode is vastly different (or there are two candi-
dates for the mode), a bimodal or multi-modal distribu-
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Section 3.2.3, the standard deviation of a bimodal distri-
bution can be quite large, which can serve as a check on
the assumption that a distribution is normal.
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was collected. Unfortunately, there is no rule of thumb
that always works, and when in doubt, the best course of
action is to plot the data, look at it, and try to determine
what is happening.
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cal rule can tell us which measure of central tendency
will be most appropriate for any particular problem.
Proper decisions rest upon knowledge of all factors in a
given case, and upon basic honesty” [Gould96].
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sure of the variance of the data. A small variance implies
that the mean is a good representative of the data,
whereas a large variance implies that it is a poor one. In
the papers we surveyed, we found that fewer than 15%
of experiments included some measure of variance.

The most commonly used measure of variance is
the standard deviation, which is a measure of how
widely spread the data points are. As a rule of thumb, in
a normal distribution, about 2/3 of the data falls within
one standard deviation of the mean (in either direction,
on the horizontal axis). 95% of the data falls within two
standard deviations of the mean, and three standard
deviations account for more than 99% of the data.

For example, in Figure 1a, which follows a normal
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the standard deviation is approximately 40% of the
mean. However, in Figure 1b, which shows a bimodal
distribution, the mean, median, and mode are quite dif-
ferent, and the standard deviation is 75% of the mean3.
Figure 1c shows an exponential distribution where the
median and mode are close, but rather different than the
mean. (We discuss techniques for determining the distri-
bution of a data set in Section 6.3.)

3. The large standard deviation here is because the distribution
is bimodal, but bimodal distributions do not necessarily have
to have a large standard deviation. The peaks of a bimodal
distribution can be close together; in this example they are not.

Another metric for analyzing the usefulness of the
mean in an experiment is the margin of error. The mar-
gin of error expresses a range of values about the mean
in which there is a high level of confidence that the true
value falls. For example, if one were concluding that the
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Figure 1. Sample distributions. The relationship
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distribution of the data collected. In a normal distribution,
the mean is representative of the data set, while in an
exponential distribution, the mode and median are more
representative. In a bimodal distribution, no single metric
accurately describes the data.
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sense of how the data is distributed and what the
expected behavior of the system will be.

In general, if the mean and median are rather close,
but the mode is vastly different (or there are two candi-
dates for the mode), a bimodal or multi-modal distribu-
tion is suggested (see Figure 1b). As described above in
Section 3.2.3, the standard deviation of a bimodal distri-
bution can be quite large, which can serve as a check on
the assumption that a distribution is normal.

It is important to note that these guidelines are not
fool-proof; comparing the mean, median, and mode can
only suggest the type of distribution from which data
was collected. Unfortunately, there is no rule of thumb
that always works, and when in doubt, the best course of
action is to plot the data, look at it, and try to determine
what is happening.

It is critical to select the appropriate metric of cen-
trality in order to properly present data. “No mathemati-
cal rule can tell us which measure of central tendency
will be most appropriate for any particular problem.
Proper decisions rest upon knowledge of all factors in a
given case, and upon basic honesty” [Gould96].

6.2 Expressing Variation
Measures of centrality are not sufficient to completely
describe a data set. It is often helpful to include a mea-
sure of the variance of the data. A small variance implies
that the mean is a good representative of the data,
whereas a large variance implies that it is a poor one. In
the papers we surveyed, we found that fewer than 15%
of experiments included some measure of variance.

The most commonly used measure of variance is
the standard deviation, which is a measure of how
widely spread the data points are. As a rule of thumb, in
a normal distribution, about 2/3 of the data falls within
one standard deviation of the mean (in either direction,
on the horizontal axis). 95% of the data falls within two
standard deviations of the mean, and three standard
deviations account for more than 99% of the data.

For example, in Figure 1a, which follows a normal
distribution, the mean, median, and mode are equal, and
the standard deviation is approximately 40% of the
mean. However, in Figure 1b, which shows a bimodal
distribution, the mean, median, and mode are quite dif-
ferent, and the standard deviation is 75% of the mean3.
Figure 1c shows an exponential distribution where the
median and mode are close, but rather different than the
mean. (We discuss techniques for determining the distri-
bution of a data set in Section 6.3.)

3. The large standard deviation here is because the distribution
is bimodal, but bimodal distributions do not necessarily have
to have a large standard deviation. The peaks of a bimodal
distribution can be close together; in this example they are not.

Another metric for analyzing the usefulness of the
mean in an experiment is the margin of error. The mar-
gin of error expresses a range of values about the mean
in which there is a high level of confidence that the true
value falls. For example, if one were concluding that the
latency of a disk seek is within four percent of the mean,

Figure 1. Sample distributions. The relationship
between the mean, median, and mode give hints about the
distribution of the data collected. In a normal distribution,
the mean is representative of the data set, while in an
exponential distribution, the mode and median are more
representative. In a bimodal distribution, no single metric
accurately describes the data.
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Expressing	Variation	
•  Measures	of	centrality	are	not	sufficient	to	
completely	describe	a	data	set.		

•  It	is	often	helpful	to	include	a	measure	of	the	
variance	of	the	data.		
– A	small	variance	implies	that	the	mean	is	a	good	
representative	of	the	data,	whereas	a	large	
variance	implies	that	it	is	a	poor	one.	

•  The	most	commonly	used	measure	of	variance	
is	the	standard	deviation.	
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Margin	of	Error	

•  Another	metric	for	analyzing	the	usefulness	of	
the	mean	is	the	margin	of	error.		
– The	margin	of	error	expresses	a	range	of	values	
about	the	mean	in	which	there	is	a	high	level	of	
confidence	that	the	true	value	falls.		
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Graphing	and	Error	Margins	

•  The	value	of	the	error	margins	depict	the	
results	in	completely	different	ways.†		

the margin of error would be four percent. Assuming
that this margin of error had been computed for a 0.05
level of significance, then if the experiment were
repeated 100 times, 95 of those times the observed
latency would be within four percent of the value com-
puted in the corresponding experiment.

Figure 2 is an example of the importance of show-
ing the margin of error. In our example, Figure 2a is put
forward to support a claim that a new technique has
reduced latency by 10%. However, this graph does not
include any indication of the margin of error, or confi-
dence intervals on the data. If the margin of error is
small, as in Figure 2b, it is reasonable to believe that
latency has been reduced. Figure 2c, however, shows a
margin of error that is as large as the stated improve-
ment. The 10% reduction in latency falls within the
error bars, and might have arisen from experimental
error.

It is very useful to be able to place results in the
context of an error margin, and it is essential to be able
to do so when trying to determine the value of a new
technique.

A related problem, which appears when measure-
ments are taken, is mistaking measurement precision for
measurement accuracy. For example, on many versions
of Unix, gettimeofday() returns the current time in
microseconds (its precision), but is only updated every
ten milliseconds (its accuracy). Timing measurements
taken using gettimeofday() on these systems will be
rounded up (or down) to nearest multiple of ten millisec-
onds. In situations such as these, it is critical to be aware
not only of how precise a measurement is, but also how
accurate. On a system with a 10ms clock granularity, it
is a waste of time to attempt to make distinctions at the
microsecond level.

6.3 Probability Distributions and Testing
As stated above, normal distributions are commonly
found in nature, but rarely found in computer science.
When measuring experimental systems, one is more
likely to encounter other types of distributions. Unfortu-
nately, it is not a trivial task to correctly identify which
distribution best models a given a dataset. From a statis-
tical point of view, an estimate of the mean and standard
deviation of can be calculated from measured data, but
without knowing the actual distribution, it is impossible
to calculate the true mean and standard deviation. Fortu-
nately, there are simple methods for determining the dis-
tribution of a dataset.

Plotting a histogram of the values in a sampled data
set is easy way to get an idea of what type of distribution
the data follows. Figure 1 shows examples of several
common distributions with noticeably different shapes.
Normal distributions (Figure 1a) are common in the nat-

ural sciences, and often represent the characteristics of
repeated samples of a homogenous population. As men-
tioned in Section 6.1, skewed distributions often occur
when some phenomenon limits either the high or low
values in a distribution. Personal income is an example
of a skewed distribution. An exponential distribution
(Figure 1c) might be seen when modeling a continuous
memoryless system, such as inter-arrival time of net-

Figure 2. Graphing and Error Margins. The value of
the error margins will depict the results in completely
different ways.

A: Latency Improvement without error margins

B: Latency Improvement with small error margins

C: Latency Improvement with large error margins
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ural sciences, and often represent the characteristics of
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that this margin of error had been computed for a 0.05
level of significance, then if the experiment were
repeated 100 times, 95 of those times the observed
latency would be within four percent of the value com-
puted in the corresponding experiment.
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†	C.	Small,	N.	Ghosh,	H.	Saleeb,	M.	Selzter,	and	K.	Smith,	“Does	Systems	Research	Measure	Up?”	Harvard	Computer	Science	Group,	
Technical	Report	TR-16-97.	
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Probability	Distributions	&	Testing	

•  Plotting	a	histogram	of	the	values	in	a	
sampled	data	set	is	easy	way	to	get	an	idea	of	
what	type	of	distribution	the	data	follows.		

•  The	Χ2	test	can	be	used	to	determine	if	
sampled	data	follows	a	specific	distribution.	
– Χ2	can	be	used	to	obtain	a	p-value	from	a	family	of	
Χ2	distributions;	the	larger	the	p-value,	the	higher	
the	probability	that	the	measured	distribution	
matches	the	candidate	distribution.		
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Basic	Statistical	Concepts	
•  Hypothesis	testing:	A	statement	either	about	
the	parameters	of	a	probability	distribution	or	
the	parameters	of	a	model.	

	 	H0:	μ1	=	μ2		 	(null	hypothesis)	
	 	H1:	μ1	≠	μ2		 	(alternative	hypothesis)	

•  If	the	null	hypothesis	is	rejected	when	it	is	
true,	a	type	I	error	has	occurred.	

•  If	the	null	hypothesis	is	not	rejected	when	it	
is	false,	a	type	II	error	has	been	made.	
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Analysis	of	Variance	(ANOVA)	

•  Analysis	of	the	fixed	effects	model.	
– Estimation	of	model	parameters.	

•  Model	adequacy	checking.	
– The	normality	assumption.	
– Residuals.		Plots	in	time,	versus	fitted	values,	
versus	other	variables.	

•  Practical	interpretation	of	results.	
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Response	Surface	Methodology	
Framework	

•  Factor	screening.	
•  Finding	the	region	
of	the	optimum.	

•  Modelling	and	
optimization	of	
the	response.	
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Other	Aspects	of	RSM	

•  Robust	parameter	design	and	process	
robustness	studies.	
– Find	levels	of	controllable	variables	that	optimize	
mean	response	and	minimize	variability	in	the	
response	transmitted	from	“noise” variables.	

– Original	approaches	due	to	Taguchi	(1980s).	
– Modern	approach	based	on	RSM.	
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Summary	

•  There	is	much	known	about	designing	and	
analyzing	experiments!	
– Follow	good	practices,	to	improve	repeatability	
and	reproducibility	of	your	experiments.	
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