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Abstract 
 
A variety of video/audio applications based on multicast have been developed to 
facilitate group communications over the Internet. One of the critical issues for 
these applications is how to keep the bandwidth consumption low while ensure 
acceptable performance.  The applications that allow multiple senders make this 
problem even more challenging, because different nodes may send data 
simultaneously.  In this paper, we focus on a multi-sender audio conferencing 
application designed on top of ALMI, an Application Level Multicast 
Infrastructure.  We present a method to improve the efficiency of the application 
by combining multiple audio streams from different senders into a single stream, 
which is then transmitted to neighboring nodes along the multicast tree.  An 
evaluation based on a JAVA implementation of the application demonstrates the 
improvement brought by the method. 
 
1.  Introduction 
 
Today's Internet is a collection of a large number of end hosts connected to each 
other via a variety of networks.  The simplest form of data transfer over the 

Internet consists of one-to-one communication (or unicast), but many of today's 
emerging applications have a requirement that goes beyond the standard 
one-to-one communication. Applications such as video conferencing, corporate 
communications, distance learning, distribution of software, stock quotes, and 
news need to support one-to-many and many-to-many communications.  One 
of the proposals was native IP multicast, which duplicates packets at each router 
along paths from the source to each destination [2][6].  Unfortunately, IP 
multicast is not widely deployed in the Internet for various reasons [5].  We 
need to resort to other approaches to support group communications.  
Application layer multicast [7][8] has been studied in recent years as an 
alternative approach to IP Multicast.  It creates a virtual overlay network 
topology that is built on the underlying TCP/IP network for data transfer, and 
lets end hosts perform the packet duplication rather than routers.  This may 
require more overall bandwidth than IP multicast because duplicate packets may 
travel the same physical links (Figure 1), but it provides a simple and 
inexpensive alternative of providing multicast-like activity on top of the already 
existing IP without any modifications to any routers.  This also allows for 
more flexibility in the control of how multicast packets are forwarded, and how 
the overlay network topology is constructed. 

 
Figure 1. An overlay topology for Application Layer Multicast 
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 One of the simple multicast applications is audio conferencing, in which a 
sender could transmit audio data to multiple receivers simultaneously.  In this 
paper, we are particularly interested in the audio conferencing application that 
allows multiple senders to transfer audio data at the same time.  This can 
happen when multiple participants at an audio conference talk at the same time.  
Another scenario is that multiple musicians play different instruments at 
different locations and want to see the collective effects.  The simple solution 
is to treat each sender independently and the audio stream from each sender is 
multicast to all receivers.  The problem with the approach is that the bandwidth 
usage will be proportional to the number of senders.  Those receivers with low 
bandwidth connections to the Internet will not be able to receive all the streams, 
or have to receive them with poor quality.  In this paper, we propose an audio 
merging technique to improve the efficiency of the application by combining 
multiple audio streams from different senders into a single stream, which is then 
transmitted to neighboring nodes along the multicast tree.  The implementation 
can deal with digital audio encoded in PCM and µ-law formats.  Audio data 
are transmitted using real-time transport protocol (RTP) [4] to enable the correct 
merging at the intermediate nodes.  We design and implement the application 
on the top of an existing implementation of application layer multicast called 
Application Level Multicast Infrastructure (ALMI) [1]. 
 The application is designed so that the merging module can be toggled on 
and off, allowing us to analyze the performance differences between merging 
the audio at intermediate nodes and simply forwarding streams without 
merging.  Experiment results show that if multiple senders are trying to 
multicast audio data simultaneously, our method will reduce the multicast 
traffic greatly and lead to a more efficient utilization of network bandwidth. 
 The rest of the paper is organized as follows.  Section 2 reviews the 
background and related work.  Our method of audio streams merging over 
ALMI is presented in section 3.  Section 4 describes the implementation.  
Section 5 analyzes the performance. Finally, the paper is concluded in section 6. 

2.  Background and Related Work 
 
 ALMI is a middleware of application level multicast in JAVA with 
many-to-many semantics.  A special node called Controller is responsible for 
creating multicast trees.  When a node joins a multicast session, it contacts the 
Controller corresponding to the multicast session it is interested in.  The 
Controller creates a minimum spanning tree based on application specific 
metrics.  Each node in the tree communicates directly only with its neighbors 
(parent or children nodes) along the spanning tree.  Update messages are 
forwarded to each node from the Controller as hosts join or leave.  A 
Controller node may be capable of handling multiple sessions at the same time.  
Also the Controller is not part of the spanning tree, and the IP address and the 
port of the Controller needs to be received though out-of-band methods. 
 The basic application interface (API) of ALMI is a very simple set of 
methods.  There are methods to join and leave a multicast session as well as 
methods to send and receive data.  When a node receives data, it will 
automatically send to all its neighbors, except the node from which the data are 
received.  Similarly, the receive method simply returns the packet of data at 
the head of a queue where incoming data are stored. 

Before the surfacing of application level multicast, early implementations 
of audio conferencing are usually based on IP multicast. These tools include 
Robust Audio Tool (RAT) [10] and vat [11].  Unfortunately, since IP multicast 
is not widely enabled on the Internet, their applications are restricted to those 
sites connected by MBONE [3]. 
 
3.  Multi-sender Audio Conferencing over ALMI with Audio 
Streams Merging 
 
In this section we present the audio streams merging method in multi-sender 
audio conferencing applications.  In these applications, multiple senders will 
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be present in the multicast tree and propagate their audio data simultaneously.  
Each end host that receives the audio data has to be equipped with output 
hardware that permits receiving multiple audio streams at the same time. 
 With this type of application in mind, we will show that the merging 
technique can improve the efficiency and reduce the bandwidth usage. At each 
intermediate node in the multicast tree, multiple audio streams will be merged, 
if possible, before re-distributed to all other neighbors. As an example (Figure 
2), suppose Node-3 has 3 neighbors, and is receiving audio streams from 
Node-1 and Node-2.  These two streams are duplicated and re-sent to Node-4.  
What we observed is that two audio streams sent to Node-4 are very likely to 
contain data that will be played out at Node-4 at the same time.  It is possible 
to merge those two audio streams into a single stream before re-sending them to 
Node-4. By doing this, the amount of bandwidth used is decreased to 
approximately half of bandwidth used in the original scheme. 
 

 
Figure 2. Example Topology where Audio Merging Takes Place 

 
3.1.  Audio Merging 
 
Before we proceed, we would like to show that it is possible and practical to 

merge multiple audio streams into one stream, and that the amount of 
bandwidth required is decreased after merging.   
 Digital audio can be recorded from an analog signal by using an 
Analog-to-Digital Converter.  This converter samples the value of the 
amplitude of the analog signal's waveform at very small intervals and encodes 
the value by means of Pulse Code Modulation (PCM).  The number of samples 
taken per second is known as the sampling rate, and as an example, CD quality 
audio has a sampling rate of 44.1 kHz.  Widely used sampling rates are 44.1 
kHz, 22.05 kHz and 8 kHz.  Also, multiple channels are allowed in the format, 
and generally 1 channel consists of mono audio and 2 channels consist of stereo 
audio.  PCM data can be either signed or unsigned. 
 A lossy compressed audio format encoding known as µ-law is generally 
used for audio data with a sampling rate of 8 kHz and a bit-depth of 16-bits.  
The compression method allows 16-bit data to be stored as 8-bit data, and is 
useful for the transfer of data since only half the amount of bandwidth is 
required. In our implementation, we will focus on 16-bit mono audio data with a 
sampling rate of 8 kHz.  Audio data that are transferred by using 8-bit µ-law 
encoding can be converted to signed PCM audio data for audio merging 
operations and for audio playback at end hosts. 
 Fortunately, merging PCM audio data is based on the fact that, in the real 
world, an analog waveform can be combined with another waveform to produce 
a resulting waveform by simply adding the two waveforms together.  
Amplitudes of opposite signs cause the waveform to cancel each other out at 
that position, while amplitudes of the same sign cause the amplitude of the 
resulting waveform to have larger amplitude.  Similarly, this can be applied to 
digital audio.  All sampled values of two (or more) sets of audio data can be 
added together at corresponding positions.  The resulting values are seen as the 
sample value of the merged audio at that position (Figure 3).  After adding the 
values together, it is possible that a sample value is beyond the bounds 16-bit 
signed PCM data could represent (Generally, 16-bit signed PCM data has a 
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minimum of -32768 and a maximum of +32767).  In this case, the sampled 
value needs to be truncated to be equal to the minimum or maximum value 
accordingly.  The quality of the merged stream is acceptable and different 
streams can be distinguished unambiguously during the playback. 
 

 
Figure 3. Merging of Two Sets of PCM Audio Data with Truncation 

 
 
 

3.2.  Timing of Audio Samples 
 
In order to merge audio in the proper corresponding positions, we need a 
method of labeling the timing relationship of two audio streams.  Since two 
different audio streams are completely independent of one another, we cannot 
simply flag pieces of audio data with sequence numbers, as there is no way to 
easily synchronize the sequence numbers used.  We know that two pieces of 
audio data should be played at the same time if they were created or recorded at 
the same point of time.  Thus, the easiest way to know if two pieces of audio 
data correspond to the same moment time is to associate a piece of audio data 
with a timestamp that marks when the beginning of that piece of audio data was 
created or recorded.  When two audio streams are received at a particular node, 
we can compare the timestamps of the two pieces of audio and see if they 
overlap.  If so, those two pieces of audio data could be merged.  It is 
important to note that it is possible for them to be merged even if the 
timestamps are not equal.  A second piece of audio data might be marked to 
begin at some point in the middle of the first piece of audio.  In this case, the 
prior part of the first piece of audio data remains the same, the middle contains 
merged data from both audio streams, and then the remainder of the merged 
data contains the rest of the second piece of the audio data.  Though this case 
will cause the required bandwidth usage to be more than that of a single stream, 
it is still more efficient than sending two completely independent audio streams. 
 To record each piece of audio data with a timestamp, we use the real-time 
transport protocol (RTP).  An RTP header contains the timestamp when an 
audio packet is created according to local machine time.  RTP allows for a 
synchronization source that would be used to ensure that all packets coming 
from different senders would have properly corresponding timestamps.  Our 
application makes the assumption that all machines active in the multicast group 
have synchronized their local machine clocks through some out-of-band 
method. 
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4.  Implementation 
 
We take care of what data are forwarded to which node during distribution 
along the multicast tree.  Each set of data forwarded to the neighbors depends 
on where the data are coming from.  It is important to note that a stream only 
needs to be duplicated to all neighbors except the one where the data are 
received.  If a neighbor sends a node some data, it is assumed that the sub-tree 
past that neighbor has already received or will receive the data.  With the same 
example in Figure 2, Node-3 has three neighbors Node-1, Node-2 and Node-4.  
It may be receiving two streams, stream A from Node-1 and stream B from 
Node-2. Because stream A is received from Node-1, it only needs to be 
duplicated to Node-2 and Node-4.  Similarly stream B received from Node-2 
only needs to be duplicated to Node-1 and Node-4.  In this example, Node-1 
and Node-2 only receive one stream, so merging is not necessary.  But Node-4 
receives data from both streams A and B; so merging can be used to reduce the 
bandwidth usage.  This example shows that all neighbors might have a 
different set of outgoing data, and this needs to be accounted for in an 
implementation of our application.  Therefore, we need to keep track of which 
neighbors are present, and forward data to each neighbor as needed.  The only 
exception to this is when audio data originates from the local end host, and the 
data would then need to be forwarded to all neighbors. 
 Another problem we need to take care of before sending data for playback 
is that audio data may be not fully merged by intermediate nodes along the 
multicast tree.  In Figure 4, we illustrate the problem where merged audio data 
packets do not match due to a slight difference in the timestamp, which creates 
an offset in the merging.  This offset would then introduce a new type of audio 
playback jitter with any audio data that immediately follows that merged audio 
data.  Therefore, our implementation will first check if any more audio data 
merging is possible with following packets according to the timestamp, and then 
deliver the audio data for playback. 

 
Figure 4. Received Audio Packets not fully merged requiring additional 

merging for playback 
 
 We now give some more details of the implementation in JAVA as shown 
in Figure 5.  A group member begins by contacting the ALMI controller to 
find its place in the multicast spanning tree.  It initializes and starts a thread 
called AudioMulticastThread that is responsible for forwarding and receiving 
audio packets.  An audio packet is first converted to µ-law format, then 
prepended with an RTP header, encapsulated as an ALMI packet (AlmiPacket), 
and finally sent to all neighbors along the multicast tree.  When a node 
receives a packet, an object named DirectedAlmiMember determines which 
neighbor the packet came from and passes it to AudioMulticastThread.  This 
thread automatically sends the packet to the local application and puts copies of 
the packet into an outgoing queue for each neighbor, except the neighbor where 
the packet is received.  AudioMulticastThread cycles through all queues for 
each neighbor, sorts all the packets by timestamp, and then checks each packet 
with the packet following it in the list to see if the timestamps overlap.  If so, it 
merges those two packets and replaces the original ones.  It ensures that all 
possible audio merging be appropriately carried out, and then forwards all of 
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those packets to that neighbor.  On receiving an audio packet, our application 
will insert the packet into a sorted queue according to the timestamp.  Data 
will be extracted and merged again as necessary and are ready for playback. 

 
Figure 5. Basic Flow of the Application 

 
5.  Performance Analysis 
 
The motivation behind this work is to reduce the bandwidth used by merging 
multiple audio streams into a single stream whenever possible.  To show that 
the method can reduce the amount of data sent between nodes, we need to track 
the amount of data being sent and received over each link in the multicast tree.  
Since the topology of the ALMI overlay network is a minimum spanning tree, 
there are no loops present and there is no concern about data inadvertently 
crossing a link more than once. 
 A reasonable way to show that this application merges audio and reduces 
the bandwidth is to set up the multicast tree in a given topology, and test the 
amount of data being sent from a number of known sources.  We will also 
want to keep the same topology and measure the amount of data being sent and 
received in the case when audio is not being merged.  The comparison between 

the amount of data sent and received in both cases will be able to show us how 
efficient this application is at reducing data transfer due to merging of multiple 
audio streams. 
 For our performance analysis, we will use a setup of four different nodes 
as shown in Figure 2 above.  Node-1 and Node-2 will be sending audio data 
from a different sound file, each transferring the data as a different stream.  
Node-3 in the middle will merge the incoming data as necessary.  After 
merging data whenever possible, it will then forward the merged data to Node-4 
designated as the receiving node which performs the local application playback 
of the audio data. 
 During our tests, Node-1 sends audio data from a 60 second sound clip 
stored in 8-bit µ-law 8 kHz mono format (*.AU) of approximately 469 KB.  
Node-2 sends audio data from a 48.7 second sound clip in 16-bit signed PCM 8 
kHz mono format (*.WAV) of approximately 762KB.  All data transferred 
between nodes is in µ-law format, so the 16-bit WAV file is converted to µ-law 
before data transfer.  Thus it takes approximately half the size of the input file, 
about 381KB, during data transfer through the application. 
 For our base case test, we want to see how many bytes are sent to and 
received from each node when merging is not present.  Table 1(a) shows the 
results for this base case test for each node's transfer amount.  The 469KB 
audio file results in 526KB of data to be sent from Node-1 to Node-3.  The 
extra data can be accounted for due to ALMI headers and RTP headers.  The 
762KB audio file (381KB of µ-law audio data) results in 427KB of data to be 
sent from Node-2 to Node-3.  Node-3 thus receives 526KB + 469KB = 953KB 
of data and then has to forward the data to all other nodes, except where the data 
are received.  The 526KB of data generated from the first audio file needs to 
be forwarded to Node-2 and Node-4 and the 427KB of data generated from the 
second audio file needs to be forwarded to Node-1 and Node-4.  Thus, Node-3 
needs to send out 526KB + 526KB + 427KB + 427KB = 1906KB.  And since 
Node-4 is receiving the exact data from the two audio streams, it receives 
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526KB + 427KB = 953KB of data, since no merging is taking place at Node-3.  
Also, Node-4 has no other neighbors to forward the data to, and is not 
generating any data, so it sends zero bytes. 
 
 KB Sent KB Recv 

Node-1 to Node-3: 526 427 

Node-2 to Node-3: 427 526 

to Node-1: 427 

to Node-2: 526 

 

Node-3 

to Node-4: 953 

 

953 

Node-4 0 953 

 
 (a) without merging       (b) with merging 

Table 1. Data sent and received from each node 
 

 Next, we examine the performance when audio merging takes effect.  In 
our setup, merging will only take place at Node-3 because this is the only node 
that would be capable of forwarding data.  All the other nodes either send or 
receive only since they only have one neighbor.  Since the application does not 
guarantee when packets are received at a given node and different instances of 
merging could produce different results, we decided to run through this test a 
number of times to come up with an average amount of data transfer reduction.  
Table 1(b) shows the average amount of data sent and received from each node 
with the same topology as above.  As we can see, the transfers between 
Node-1 and Node-2 through Node-3 do not change.  This is because no 
merging could take place in these cases.  All the data coming from Node-1 
needs to be forwarded to Node-2, and nothing else, and the same is true in the 
opposite direction.  Node-3 also receives the same amount of data because it is 
only receiving from Node-1 and Node-2.  We will focus on the amount of data 

sent from Node-3 and received by Node-4. It is significantly reduced due to the 
audio merging.  Since one audio file is larger than the other, the best-case 
scenario is when total merging is performed and the total data sent after 
merging would be equal to the larger of the two streams, and in this case is 
526KB.  The table shows that the average amount of data sent with merging is 
580KB, which is only 54KB, or about 10% more than the best case.  Also, 
from Table 1(a), sending data without merging would have required that 953KB 
of data be sent.  This shows the application can reduce the amount of 
bandwidth used to about 60% when merging of audio data is enabled is for 
these files. 
 These tests have shown that the application can reduce the amount of data 
transferred between nodes when audio data merging is used.  In this case, 
approximately a 40% reduction of data transfer was achieved.  The amount of 
data reduction depends on how much data are being sent from each stream, and 
how much of the data overlap.  It should be clear that a larger number of 
streams present at any given time would cause an even greater reduction due to 
more data being merged. 
 
6.  Conclusion 
 
In this paper we have described an audio conferencing application that sends 
multiple audio streams over ALMI.  In an attempt to decrease the bandwidth 
usage between nodes in the multicast spanning tree, we presented a method of 
merging multiple audio streams at intermediate nodes prior to forwarding the 
audio data to other nodes.  We have presented a design, an implementation and 
a performance analysis for such an application that performs successful audio 
streams merging at intermediate nodes, along with proper playback of the 
merged audio streams at end hosts. 
 
 

 KB Sent KB Recv 

Node-1 to Node-3: 526 427 

Node-2 to Node-3: 427 526 

to Node-1: 427 

to Node-2: 526 

 

Node-3 

to Node-4: 580 

 

953 

Node-4 0 580 
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