
CS270 gdb summary
Department of Computer Science, University of Kentucky (Fall 2020)

0. For lab2, some C statements, open, lseek, read, memcmp, strcpy, byte order

1. To be able to use gdb, compile the program with -g option, e.g.,
 gcc -Wall -g -o match match.c

2. To run gdb on match (without any arguments for match, the program to be debugged)
 gdb match
 After getting into gdb, the typical steps are:

1) set one or more breakpoints (break)
2) run the program (run)
3) repeat these in any order and for as many times as you need,
 run the next command (n), print values of variables (p or x), set/clear breakpoints (b or clear)
4) quit gdb (quit)

3. Here is a list of basic commands after gdb is running:
• break function-name or line-number, or address (set a break point)
• run arguments-for-match (run the program with the args)
• list [line-number] (list the programs)
• next (run the next command)
• continue (continue to run until next break point)
• print variable-name (print the value of a variable)
• print /x variable-name (print in hexadecimal format)
• p pointer (register) (print the pointer address/register value)
• x pointer (register) (print the content pointed to by the pointer/register)
• clear line-number (delete the break point at the place)

Note:
1. Each command can be abbreviated as the first letter of the command:

 break (b), run (r), list (l), next (n), continue (c), print (p).
2. Undisplayable characters in character strings are printed out in Octal format.

4. Here is a list of more advanced commands for gdb:
• b *address (set a break point at the address)
• stepi (or si) (step one machine instruction, possibly into a procedure)
• nexti (or ni) (go instruction without going through the procedure)
• finish (finish all the instructions in the current function)

• p /x $rsi (print out the hex value of the register)
• p /d $rdi (print out the decimal value of the register)
• x/s $rsi (print out the string in the memory pointed to by $rsi)
• x/6dw $rsp (print out six numbers in memory pointed to by $rsp)
• x/3xb 0x7fffffffe068 (print out three numbers in memory at an address, in hex and size is byte)

(b1, h2, w4, g8)

Notice registers are indicated by $ in gdb, rather than % in the code.
You can use objdump -d bomb > bomb.s to get assembly code from machine code.

