
1

Introduction to UML

Acknowledgment: These slides are adopted with some minor
mofidifications from a presentation by Majid Ali Khan from

University of Central Florida.

Acknowledgements

• Slides material are taken from different
sources including:
– Prashanth Aedunuthula UML presentation,

Fall 2004
– Lecture slides from Software Engineering

course at UC Berkeley (Professor Necula –
Fall 2004)

– Lecture slides from a course on web at:
• www.sts.tu-harburg.de/ teaching/ws-

98.99/OOA+D/3-0-UML.pdf

2

Overview

• What is Modeling?

• What is UML?

• A brief history of UML

• Understanding the basics of UML

• UML diagrams

• UML Modeling tools

Modeling

• Describing a system at a high level of
abstraction
– A model of the system

– Used for requirements and specifications

• Is it necessary to model software
systems?

3

Object Oriented Modeling

What is UML?

• UML stands for “Unified Modeling Language”

• It is a industry-standard graphical language for
specifying, visualizing, constructing, and
documenting the artifacts of software systems

• The UML uses mostly graphical notations to
express the OO analysis and design of software
projects.

• Simplifies the complex process of software
design

4

Why UML for Modeling

• Use graphical notation to communicate more
clearly than natural language (imprecise) and
code(too detailed).

• Help acquire an overall view of a system.

• UML is not dependent on any one language or
technology.

• UML moves us from fragmentation to
standardization.

History of UML

5

Types of UML Diagrams

• Use Case Diagram

• Class Diagram

• Sequence Diagram

• Collaboration Diagram

• State Diagram

This is only a subset of diagrams … but are most
widely used

Use Case Diagram

• Used for describing a set of user
scenarios

• Mainly used for capturing user
requirements

• Work like a contract between end user
and software developers

6

Use Case Diagram (core components)

Actors: A role that a user plays with respect to the system,including
human users and other systems. e.g.,inanimate physical objects (e.g. robot);
an external system that needs some information from the current system.

Use case: A set of scenarios that describing an interaction between a user

and a system, including alternatives.

System boundary: rectangle diagram representing the boundary between
the actors and the system.

Use Case Diagram(core relationship)

Association: communication between an actor and
a use case; Represented by a solid line.

Generalization: relationship between one general
use case and a special use case (used for defining
special alternatives)
Represented by a line with a triangular arrow head
toward the parent use case.

7

Use Case Diagram(core relationship)

Extend: a dotted line labeled <<extend>> with an arrow
toward the base case. The extending use case may add behavior to
the base use case. The base class declares “extension points”.

<<extend>>

Include: a dotted line labeled <<include>> beginning at base
use case and ending with an arrows pointing to the include use
case. The include relationship occurs when a chunk of
behavior is similar across more than one use case. Use
“include” in stead of copying the description of that behavior.

<<include>>

Use Case Diagrams

Library System

Borrow

Order Title

Fine Remittance

Client
Employee

Supervisor

• A generalized description of how a system will be used.

• Provides an overview of the intended functionality of the system

Boundary

Actor
Use Case

8

Use Case Diagrams(cont.)

(TogetherSoft, Inc)

Use Case Diagrams(cont.)

•Pay Bill is a parent use case and Bill Insurance is the
child use case. (generalization)

•Both Make Appointment and Request Medication
include Check Patient Record as a subtask.(include)

•The extension point is written inside the base case
Pay bill; the extending class Defer payment adds the
behavior of this extension point. (extend)

9

Class diagram

• Used for describing structure and behavior
in the use cases

• Provide a conceptual model of the system
in terms of entities and their relationships

• Used for requirement capture, end-user
interaction

• Detailed class diagrams are used for
developers

Class representation

• Each class is represented by a rectangle subdivided into three
compartments
– Name
– Attributes
– Operations

• Modifiers are used to indicate visibility of attributes and operations.
– ‘+’ is used to denote Public visibility (everyone)

– ‘#’ is used to denote Protected visibility (friends and derived)

– ‘-’ is used to denote Private visibility (no one)

• By default, attributes are hidden and operations are visible.

10

An example of Class

Account_Name
- Customer_Name
- Balance

+addFunds()
+withDraw()
+transfer()

Name

Attributes

Operations

OO Relationships

• There are two kinds of Relationships
– Generalization (parent-child relationship)

– Association (student enrolls in course)

• Associations can be further classified as
– Aggregation

– Composition

11

Subtype2

Supertype

Subtype1

OO Relationships: Generalization

- Generalization expresses a
parent/child relationship among related
classes.

- Used for abstracting details in several
layers

Regular
Customer

Loyalty
Customer

CustomerExample:

Regular
Customer

Loyalty
Customer

Customeror:

• Represent relationship between instances
of classes
– Student enrolls in a course

– Courses have students

– Courses have exams

– Etc.

• Association has two ends
– Role names (e.g. enrolls)

– Multiplicity (e.g. One course can have many students)

– Navigability (unidirectional, bidirectional)

OO Relationships: Association

12

Association: Multiplicity and Roles

University Person

1

0..1

*

*

Multiplicity

Symbol Meaning

1 One and only one

0..1 Zero or one

M..N From M to N (natural language)

* From zero to any positive integer

0..* From zero to any positive integer

1..* From one to any positive integer

teacheremployer

Role

Role

“A given university groups many people;
some act as students, others as teachers.
A given student belongs to a single
university; a given teacher may or may not
be working for the university at a particular
time.”

student

Class Diagram

Order

-dateReceived
-isPrepaid

-number :String
-price : Money

+dispatch()
+close()

Customer

-name
-address

+creditRating() : String()

Corporate Customer

-contactName
-creditRating
-creditLimit

+remind()
+billForMonth(Integer)

Personal Customer

-creditCard#

OrderLine

-quantity: Integer
-price: Money

-isSatisfied: Boolean

Product* 1

1

*
Employee

*

{if Order.customer.creditRating is
"poor", then Order.isPrepaid must

be true }

* 1

Constraint

(inside braces{}}

Operations

Attributes

Name

Association

Multiplicity: mandatory

Multiplicity:
Many value

Multiplicity:
optional

Generalization

[from UML Distilled Third Edition]

class

0..1

13

Association: Model to Implementation

Class Student {
Course enrolls[4];

}

Class Course {
Student have[];

}

Student Course
enrollshas

* 4

OO Relationships: Aggregation

Class C

Class E1 Class E2

AGGREGATION

Aggregation: expresses a relationship among instances
of related classes. It is a specific kind of Container-
Containee
relationship.

It expresses a relationship where an instance of the
Container-class has the responsibility to hold and maintain
instances of each Containee-class that have been created
outside the auspices of the Container-class.

Aggregation should be used to express a more informal
relationship than composition expresses. That is, it is an
appropriate relationship where the Container and its
Containees can be manipulated independently.

Aggregation is appropriate when Container and
Containees have no special access privileges to each other.

Container Class

Containee Classes

Bag

Apples Milk

Example

[From Dr.David A. Workman]

14

Sequence Diagram(make a phone call)

Caller Phone Recipient

Picks up

Dial tone

Dial

Ring notification Ring

Picks up

Hello

Sequence Diagram:Object interaction

Self-Call: A message that an
Object sends to itself.

Condition: indicates when a
message is sent. The message is
sent only if the condition is true.

Iteration

Condition

A B

Synchronous

Asynchronous

Transmission
delayed

Self-Call

[condition] remove()

*[for each] remove()

15

Sequence Diagrams – Object Life Spans

• Creation

– Create message

– Object life starts at that point

• Activation

– Symbolized by rectangular
stripes

– Place on the lifeline where object
is activated.

– Rectangle also denotes when
object is deactivated.

• Deletion

– Placing an ‘X’ on lifeline

– Object’s life ends at that point

Activation bar

A

B
Create

X
Deletion

Return

Lifeline

Sequence Diagram
User Catalog Reservations

1: look up ()

2: title data ()

3: [not available] reserve title ()

4 : title returned ()

5: hold title ()

5 : title available ()

6 : borrow title ()

6 : rem ove reservation ()

•Sequence diagrams demonstrate the behavior of objects in a use case

by describing the objects and the messages they pass.

•The horizontal dimension shows the objects participating in the interaction.

•The vertical arrangement of messages indicates their order.

•The labels may contain the seq. # to indicate concurrency.

Message

16

Interaction Diagrams: Collaboration diagrams

User

Catalog

Reservations

start

1: look up
2: title data

3 : [not available] reserve title

4 : title returned

5 : hold title

6 : borrow title

6: remove reservation

5: title available

•Shows the relationship between objects and the order of messages passed between them.
between them.

•The objects are listed as rectangles and arrows indicate the messages being passed
•The numbers next to the messages are called sequence numbers. They show the sequence
of the messages as they are passed between the objects.

•convey the same information as sequence diagrams, but focus on object roles instead of the
time sequence.

State Diagrams
(Billing Example)

State Diagrams show the sequences of states an object goes
through during its life cycle in response to stimuli, together
with its responses and actions; an abstraction of all possible
behaviors.

Unpaid

Start End

Paid
Invoice created paying Invoice destroying

17

State Diagrams
(Traffic light example)

Yellow

Red

Green

Traffic Light
State

Transition

Event

Start

UML Modeling Tools

• Rational Rose (www.rational.com) by IBM

• TogetherSoft Control Center, Borland

(http://www.borland.com/together/index.html)

• ArgoUML (free software) (http://argouml.tigris.org/)

OpenSource; written in java

• Others (http://www.objectsbydesign.com/tools/umltools_byCompany.html)

18

Reference

1. UML Distilled: A Brief Guide to the Standard Object Modeling Language
Martin Fowler, Kendall Scott

2. IBM Rational
http://www-306.ibm.com/software/rational/uml/

3. Practical UML --- A Hands-On Introduction for Developers
http://www.togethersoft.com/services/practical_guides/umlonlinecourse/

4. Software Engineering Principles and Practice. Second Edition;
Hans van Vliet.

5. http://www-inst.eecs.berkeley.edu/~cs169/

