

Acknowledgement: Based on the slides by Dr. Richard Newman in CIS 6930 at the University of Florida.

What is PLC?

- PLC = power line communication
 - Uses existing power distribution wires
- PLC has been in use for many decades
 - Utility company use at very low data rates for control purposes
- Very challenging communication environment
 - High attenuation, low power
 - Multipath fading, noise
- Recent advances in processing power enable high-speed communication

Visions

- Imagine networking your PCs, laptops, printers, cable/DSL modem, etc. by simply plugging them into power outlets
- Imagine repositioning your wireless AP for improved reception by simply moving a device the size of a deck of cards to a different outlet
- Imagine streaming HDTV from DVD/PVR/settop box to any display without adding new wires
- Imagine moving your telephone to any location by changing where it is plugged in

Narrowband PLC

- Smaller bandwidth, usually lower frequency
- Inexpensive
- Lower data rate
- · Long used for control applications
- Standards
 - CEBus
 - LONworks
 - PLC4Trucks

In-home Broadband PLC

- Advances in processing, algorithms allows
 higher data rates
- ca. 2000 HomePlug 1.1
 - Up to 14 Mbps raw rate, 8 Mbps after coding
 - Up to 6 Mbps TCP/IP throughput
- ca. 2005 Panasonic proprietary video xfer
- ca. 2006 HomePlug AV
 - Up to 200 Mbps raw, 150 Mbps after coding

Frequency Dependent Fading

- Multiple reflection points in medium
 - Wire gauge changes
 - Sharp turns in wiring
 - Junction box connections
- Causes frequency dependent fading
- Longer impulse response => ISI
- Load changes affect channel
- Every path is unique (even in each direction)

Noise Sources

- Brush motors
 - Hair dryer, drill, mixer, blender, etc.
 - Usually intermittent
- Periodic impulses
 - Switching power supply, halogen lamp, etc.
 - Severe noise power
- Random impulse noise
 - Light dimmer switch, power system "glitches"
- Radio interference
 - Amateur radio transmitters

Forward Error Correction

Error Handling

•Forward Error Correction

- Copy codes
- Block codes
- Convolutional codes
- Scrambling
- Concatenated codes
- Turbo-codes
- Low Density Parity Check (LDPC)
- Backward Error Correction (BEC)

Error Correction Strategies

- Forward Error Correction
 - Include sufficient redundancy in transmitted units that errors can be corrected
 - Simplifies sender protocol used in PHY
- Backward Error Correction
 - Include sufficient redundancy in transmitted units that errors can be detected
 - Retransmit damaged units
 - More efficient used in MAC and above
- Limitations
 - Hamming Distance of code limits capabilities
 - Always possible to "fool" receiver

- Systematic vs. non-systematic
 - Systematic = data bits appear in coded stream
 - Non-systematic = no data bits identifiable
- Hamming Distance
 - H(x,y) = number of bits where x and y differ
 - Code C = {x1, x2, ..., xN} set of valid codewords
 - d = H(C) = min{H(x,y) | x and y are distinct codewords in C}
 - Maximum detection ability = d-1
 - Maximum correction ability = (d-1)/2

Forward Error Correction

- Block vs. continuous
- Block = set number of information symbols encoded into set number of code symbols
 - Internal fragmentation
 - Need for delimitation
- Continuous = stream of information symbols encoded into stream of code symbols
 - Memory/constraint length must "fill the pipeline"
- Linearity
 - Sum of two code words is a code word
- Concatenation
 - Combine two codes (inner and outer) to increase correction capabilities

Block Codes

- Copy codes
- LRC
- Hamming codes
- Reed-Solomon
- LDPC

Block Codes Copy Codes Simplest code • Copy data bits r times to encode Use received copies to "vote" for input value Can survive a burst error if scrambled LRC – Longitudinal Redundancy Check Information bits arranged in p-1 by q-1 matrix • Each row has parity bit at the end • Each column has parity bit at the bottom • n = pq, k = (p-1)(q-1), r = p+q-1Detects single bit errors

LRC Example

101101101011 = information bits

 $1011_{-} 1011_{-}$ $0110_{-} -> 0110_{-}$ $1011_{-} 1011_{-}$ $0110_{-} --- 0110_{-}$ VRC

1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 = code word

Low Density Parity Check Codes

- Linear code
- Capacity approaching code
 - Can get near to Shannon limit in symmetric, memoryless channel
- Uses iterative belief propagation
- Defined by sparse parity check matrix
- Used in DVB-S2 digital TV, ITU-T G.hn, 10GBase-T

Some Functuring Matrix	
Code Rate	Puncturing Matrix
1/2	1
	1
2/3	1 0
	1 1
3/4	1 0 1
	1 1 0
5/6	1 0 1 0 1
	1 1 0 1 0
7/8	1 0 0 0 1 0 1

Scrambling

- Convolutional codes correct well when errors are sparse
- Tend to have problems with burst errors
 - Scramble bits after encoding, before decoding
 - Concatenated codes allow errors/resynch
- Scrambling
 - Shuffle order of bits on the way out/in
 - Interleaver depth = memory required to shuffle
 - E.g., fill block in row order, read out column order

Backward Error Correction (BEC)

- Received data cannot be corrected
- Include checksum/redundancy check to detect errors
- Retransmit frames that have errors
- . How does sender know which to resend?
 - ACK OK, don't resend
 - NAK Received damaged frame
 - No response time out and resend
- ACKs
 - Cumulative vs. individual vs. SACK

HomePlug AV PHY

What is HomePlug AV?

- Broadband PLC for home networking
- Open industry standard
 - 6+ manufacturers
- Developed 2003-2007 by Homeplug Powerline Alliance (HPA)
 - Consortium of chip designers, OEMs, PLC users
 - Products shipped in 2006
- Second ethernet class PLC, most widely available
 - 150 Mbps coded PHY data rate
 - 0ver 40 million units shipped
- Comprises
 - PHY modulation, coupling, FEC, etc.
 - MAC medium access, ARQ, etc.
 - Bridging to other PLC networks or to 803.3/11/etc.

HPAV Networks

- Physical Network (PhyNet)
 - Relative to a station (STA)
 - All other STAs able to communicate with the reference STA
- Logical Network (AVLN)
 - Has a Central Coordinator (CCo) STA
 - Set of STAs with same
 - Network ID (NID) and
 - Network Membership Key (NMK) (usually)

HomePlug AV MAC

HPAV Challenges

• Backward compatibility with HP1.0

- Delivered base of over 10 million chips
- Return customers likely
- Take advantage of high speed PHY
 - · Fixed time overheads for delimiters/VCS
 - MSDUs typically less than 1500 octets
- Provide QoS for video/audio/gaming/etc.
 - · Latency and jitter control
 - Bandwidth "guarantees"
- Deal with PHY challenges
 - Channels change can degrade, cause loss
 - Impulse noise may destroy 1-2 symbols per impulse
 - · Hidden nodes, neighbor networks

HPAV Challenges (2)

- Minimize overhead
 - Aim at 80% MAC efficiency for streams
 - Low efficiency expected with low data rate streams
- User-friendly security
 - Must be understandable
 - Must be convenient
 - Must be secure
- Stations may leave unexpectedly
 - Consumer electronic devices
 - Not dedicated to AVLN like AP is to WLAN

HPAV Solution Approaches

- Backward compatibility with HP1.0
- Take advantage of high speed PHY
 - Maximize PHY Body length for efficiency
- Provide QoS for video/audio/gaming/etc.
 - Timestamp MSDUs with QoS needs
 - Move on if MSDU can't be delivered on time
 - Admission control for new QoS streams
 - Scheduled access

HPAV Solution Approaches (2)

- Deal with PHY challenges
 - Maintain view of channel rates
 - · Maintain view of stream backlogs
 - Allow partial reception of MPDU
 - RTS/CTS for hidden nodes
 - Redundancy for scheduling information
 - Neighbor network coordination
- User-friendly security
 - Network password entry
 - Device password entry

HPAV Solution Approaches (3)

- Minimize overhead
 - Aggregation of MSDUs, management messages
 - · Minimize use of delimiters
 - Small addresses 8-bit Terminal Equipment IDs (TEIs)
 - · Allow for contention-free access
 - Integrated encryption/IV derivation
- Stations may leave unexpectedly
 - Employ soft state
 - Use negotiation for determining coordinator
 - Allow for handover/recovery of responsibilities

HPAV Solutions

- Backward compatibility with HP1.0
- Central Coordinator
 - Allows admission control/scheduled access
 - Must be able to move CCo/recover from loss of CCo
 - · Maintains authoritative network time base
- Central Beacon
 - Provides common information
 - Provides synchronization for access
 - Advertises network time base (NTB) for QoS
 - Includes persistence for redundancy
 - Synchronized to line cycle
- Proxy Coordinator
 - Repeats Central Beacon for hidden nodes

HPAV Solutions (2)

- Contention-Free Periods
 - · Managed by call admission through CCo
 - · Regions reserved for specific streams
 - · Reservations persist in same part of line cycle
 - QoS stream creation negotiated by all parties
 - · Global link identifiers for efficient reference
 - Expand/squeeze as needs/channels change
- Two-level Segmentation/Reassembly
 - Aggregate MSDUs into MAC Frame stream
 - Segment MF Stream for encryption/transmission
 - Make segments unit of reliable delivery inside MAC
 - CRC per segment
 - Selective Acknowledgements for multiple segments

HPAV Solutions (3)

- MPDU bursting to save on ACKs
 - Acknowledge all segments in multiple MPDUs in SACK
 - MPDU number to know when to send SACK
 - MPDU count to know burst duration
- AV Logical Networks based on cryptography
 - Key hierarchy
 - NMK needed to join logical network
 - NEK used for data encryption
 - Integrated segmentation/encryption
 - IV derived from MPDU and segment information
 - · Push-button inherently insecure at time of join
 - Two security levels
 - Password parameter definition

HPAV General Operation

- Each AVLN has a CCo
 - CCo is determined dynamically
 - CCo give general information in beacon
 - CCo admits new STAs
- STAs join AVLN by requesting NEK
 - STA must have Network Membership Key (NMK) to get Network Encryption Key (NEK)
 - Unauthenticated STAs can do very little
 - STA gets NEK from CCo
- Time divided into Beacon Periods (BPs)
 - Access information based on BP

HPAV Beacon

- Beacon Payload holds 136 octets
- Beacon sent periodically (once per BP)
 - Sent by Central Controller (CCo)
 - Provides reference Network Time Base (NTB)
 - · Indicates offsets for future Beacons
- Three Beacon types
 - Central Beacon issued by CCo
 - Provides scheduling information
 - Proxy Beacon copy of central beacon repeated by Proxy Coordinator (PCo) when hidden nodes
 - Discovery Beacon sent for network discovery

HPAV PHY Block Structure

- PBs are mapped by PHY to FEC Blocks
 - FEC succeeds or fails
- PBs are basic unit of delivery by MAC internally
 - PB is ACKed or retransmitted using SR-ARQ
 - SACK specifies ACK/NAK
- PH Header (PBH) 4 octets
 - · Info for reassembly, disaggregation, recovery
- PB Body (PBB)
 - 512 octets or 128 octets long not interpreted here
- PB Check Sequence (PBCS)
 - CRC-32 not encrypted for checking PB reception
 - PB discarded and NAKed if incorrect

HPAV PHY Block Header Segment Sequence Number (SSN) 16 bits – segment # in MAC Frame stream Init to 0, increment on each new segment sent Discard duplicates MAC Frame Boundary Offset (MFBO) 9 bits to indicate first octet of first MF in PB Body Resynch if a segment is never received Flags

Central Coordinator (CCo)

- Issues central beacon
- Associates new stations
 - Issues TEI with lease, announces to AVLN
- Authenticates new stations
 - Verifies possession of NMK, issues NEK
 - Rotates NEK
- Performs admission control
 - · Determines resource needs and availability
 - Issues Global LID
 - · Performs scheduling
- May perform handover
 - Transfer CCo functions to another STA
- Performs neighbor network coordination

CCo Behavior

- Perform CCo Duties
 - As long as there are other STAs in AVLN
- If all other STAs leave AVLN
 - · Remain CCo for at least Discovery period
 - If no STA joins and another AVLN is present, become Unassociated STA
 - Else become Unassociated CCo
- If STA in AVLN should become CCo
 - · Other STA is User-appointed and this one is not
 - Other STA is more capable or better positioned
 - Execute handover procedure
 - Become STA in AVLN

AVLNs

- Have a CCo
 - CCo issues central beacon, acts as coordinator
 - May have Proxy Coordinator(s) also
- Share same Network ID (NID)
 - NID normally derived from NMK
 - Should uniquely identify AVLN
 - Remains constant regardless of CCo
- Share same Security Level
 - NMK associated with SL
 - SL must be the same throughout AVLN
- Share same NEK
 - CCo provides NEK during authentication using NMK
 - NEK used to encrypt traffic in AVLN

Authentication

- Process Steps
 - Association is obtaining a valid TEI (Terminal Equipment Identifier)
 - Authorization is obtaining a valid NMK
 - Authentication is obtaining a valid NEK
- Obtaining a valid NEK
 - STA must have NMK first
 - STA requests NEK from CCo using NMK, provide nonce
 - If CCo decrypts, NMK is valid; provide NEK and nonce using NMK, else CCo indicates failure
- Updating NEK
 - NEK rotated at least once per hour
 - CCo requests nonce (NEK encrypted); STA responds with nonce (NEK encrypted)
 - CCo sends set key msg with nonce encrypted with NMK and old NEK; STA acknowledges using same keys

Selecting a CCo

- User Selection always has precedence
 - Allow user to control their network
 - User must enter CCo's MAC address
- Autoselection Criteria
 - CCo capability is most important
 - Number of other STAs in STA's physical network is next
 - Number of neighbor AVLNs seen is next
- Handover procedure to pass info to new CCo
 - Also inform STAs in AVLN of new CCo
 - NID remains the same

• Implementations must ensure handovers do not occur frequently

HPAV Security

- Purposes
 - Control access to the AVLN
 - Maintain confidentiality and integrity of messages
- Mechanisms
 - AES-128 in CBC mode
 - CRC-32 Integrity Check Value
 - SHA-256 Hash function
 - Nonces
 - Channel adaptation
- Usability
 - Network Password (NPW)
 - Device Password (DPW)
 - Push-button mechanism

HPAV Conclusions

- Comprehensive Protocol
 - Supports all traffic types
 - Supports jitter control, bandwidth, delay, etc.
- Complicated!
 - · Variety of roles and modes
 - Large number of Management Messages
- Coexistence
 - Detects and coexists with HP1.0/1.0.1
 - Can coordinate with neighbor AVLNs
- User-friendly
 - A primary goal
 - Intuitive and easy security setup

