3. Overall vision of smart grid

The so called smart grid should be

- Intelligent
 - capable of sensing, rerouting power, and minimizing a potential outage
 - work autonomously and respond faster than humans

Efficient

- capable of meeting increased consumer demand without adding infrastructure

Opportunistic

- create new opportunities and markets
- capitalize on plug-and-play innovation whenever and wherever appropriate

Vision of smart grid continued

- Accommodating
 - accept energy from virtually any source
 - capable of integrating any better idea and technology easily
- Motivating
 - enable real-time communication between consumer and utility
 - facilitate tailoring of energy consumption based on price and other environmental concerns
- Quality focused
 - deliver high quality power without sags, spikes and disturbances
 - ability to power the increasingly digital economy

Vision of smart grid continued

- Resilient
 - increasingly resistant to attack and natural disasters as it becomes more decentralized
 - reinforced with smart grid security protocols for enhanced security
 - resilience versus reliability

IEEE definition: reliability [engineering] is "a design engineering discipline which applies scientific knowledge to assure that a system will perform its intended function for the required duration within a given environment, including the ability to test and support the system through its total lifecycle."

Vision of smart grid continued

- Green
 - slowing the advance of global climate change and
 - offering a genuine path toward significant environmental improvement.

4. Scope of smart grid

Areas that cover the scope of the smart grid include

- The delivery infrastructure
 - e.g., transmission and distribution lines, transformers, switches
- The end-use systems and related distributedenergy resources
 - e.g., building and factory loads, distributed generation, storage, electric vehicles
- Management of the generation and delivery infrastructure at the various levels of system coordination
 - e.g., transmission and distribution control centers, regional reliability coordination centers, national emergency response centers

Scope of smart grid continued

- The information networks themselves
 - e.g., remote measurement and control communications networks
 - inter- and intra-enterprise communications, public Internet
- The financial and regulatory environment
 - that fuels investment and motivates decision makers to procure, implement, and maintain all aspects of the system
 - e.g., stock and bond markets, government incentives, regulated or non-regulated rate-of-return on investment

5. Benefits of smart grid

- Increased power efficiency
 - reduce transmission, distribution and customer load losses
 - increase efficiency of electrical generation
- Optimized asset utilization and efficient operation
 - manage existing plant generation using real-time demand prediction instead of constructing new plants
 - increase utilization of line capacity

- Accommodating all generation and storage options
 - accommodate various power generation sources
 - offer net-metering, reduce imported fuel and develop storage technologies
- Facilitating integration of distributed generation
 - Provide small-scale on-site generation opportunity as an alternative approach to reduce energy losses in transmitting electricity
- Facilitating integration of renewable resources
 - integrate all means of renewable sources
 - help meet the states' RPS (renewable portfolio standard) standards

- Increased system reliability
 - predict & respond to system disturbances and reduce outage times
 - be resilient to attack and natural disasters by self healing
- Improved outage management
 - quickly and precisely : identify, locate and respond to fault
- Improved power quality
 - reduce losses caused by power quality issues
 - offer flexible level of power quality based on different customer demand.

- More effective consumer load control
 - Implement effective demand-side management, offer the opportunity of dynamic pricing
 - allow customers to tailor their energy consumption
- More effective distribution monitoring
 - utilize advanced sensing and measurement technology in power distribution system, more effective SCADA system
- Increased national and information security
 - protect data and information privacy, and enhance cyber security.

- Reduced environmental impact
 - reduce emissions, CO2, SO2 & NOx, ensure sustainable development
- Improved national and regional competitiveness
 - Result in lower electricity rate and energy bills, enable new jobs, services and markets
- New customer service benefits
 - Provide the digital channel for two-way communication and better fulfill customer demands
- New governmental and regulatory benefits
 - better global intercommunication, more engagement from government and regulatory agency, provide better services

